S&A FY03 ANNUAL REVIEW MEETING

Solid State Sensors for Monitoring Hydrogen in IOF Process Streams

A. McDaniel, D. Morrison (SNL)

M. Horn, R. Jayaraman, R. Messier, R. McGrath (PSU)

F. Schweighardt (APCI)

PENNSTATE

Project Overview

Project description

- Fabricate various Pd alloy (Au, Ni) sensor structures
- Functionalize with inorganic coatings (SiO₂, SiC, SiCN)
- Laboratory test under mixed-gas, process-like conditions
- Field test sensors to demonstrate value added

Objectives

- Overcome limitations to existing technology
 - hydride phase transitions, aggressive chemical environments
- Optimize alloy composition, film morphology, coating structure

Overall goal

 Develop inexpensive thin film chemical resistor technology for distributed monitoring of hydrogen in industrial process streams

Technical Merit

- Measuring H₂ content of process streams critical to S&A community (Industries of the Future)
 - Glass
 - surface defects in tin float baths
 - Chemicals
 - ammonia and polyolefin manufacture, batch hydrogenation
 - Petroleum
 - hydrogen recovery / cogeneration for oil refining
- Application outside Industries of the Future
 - Advancing the H₂ economy
 - generation, storage, utilization

Technical Merit

H₂ microsensor new technology to S&A community

- Current method
 - MS and GC/MS, complex instrument (\$300K per unit)

Extend applicability of chemical resistor

- Aggressive environment
- Mixed-gas process streams
 - H₂, CH₄, C₂-C₄ species, H₂O, CO, sulfur species
- High pressure / high temperature

Performance metric

- Simple, inexpensive, robust microsensor
- On-line hydrogen analysis time < 5 s per data point
- Compositional analysis accuracy < 0.1% for H₂

Overview of Technology

- Thin ohmic film of transition metal alloy (Pd, Ni, Au)
- Principle of operation
 - Surface chemistry moderates response
 - dissociative adsorption of H₂
 - Protons diffuse into bulk altering I-V characteristics
 - increase electrical resistance
 - measure change relative to nominal resistivity (dR/R)
- Unique selectivity to H₂

Barriers to Industrial Applications

- Hydride phase transitions at moderate H₂ pressures
 - $-P_{\alpha-\beta}$ < 0.6 atm H₂ for pure Pd
 - Increase strain in thin film
 - delaminate and destroy sensor
 - Large hysteretic effect
- Poisoning of catalytic surface by CO and sulfur compounds (H₂S, RR'S, RHS)

Design, Fabricate, and Test Sensors

- Contact lithography, magnetron sputtering
 - precise control of film properties
- Laboratory tests (SNL)
 - Extensive materials evaluation capabilities
 - Flow cells with integrated diagnostics
 - Vacuum to 2000 psia

Pure Pd Chemical Resistors

- H₂ produces a change in resistance
 - Relatively rapid response, reversible
 - Temperature dependent uptake (Sievert's Law)
- Phase transition results in device failure

Effects of Alloy Metal and Composition

Thin film Pd-H₂ system like bulk material

- 1/T behavior of $P_{\alpha-\beta}$ in agreement with bulk and sintered samples

- Alloying influences $P_{\alpha-\beta}$ hydride transition point

- Ni stabilizes film at the expense of sensitivity
- Au expected to destabilize film at higher concentrations

Effects of Film Morphology

- Alloy composition influences sensitivity
- Surface microstructure plays an unknown role
 - Rough films have slower response time and lower sensitivity

Chemical Poisoning by CO

Surface chemistry controls response

- Site blocking mode
 - long response times
- Trapping mode
 - attenuate H₂ sensitivity

Modes governed by who's first

- Site blocking
 - CO first, or simultaneous
- Trapping
 - H₂ first
- Kinetically controlled phenomena

dR/R (x10⁻³)

Inorganic Films May Mitigate Poisoning

- Thick, dense oxides, nitrides, carbides
 - Precise control of film properties
 - composition, thickness, morphology
- Ultimate catalyst poison!
 - Activity at buried interface or sizeable defects in film?

SiO₂ Coating - Response to H₂ + CO

- Factor of 3 to 30 times faster (or more?)
- May be possible to mitigate attenuation due to trapping / site blocking

348 K, 0.13 atm, Thin SiO₂

10.0

Technical Progress and Outlook

Completed Project Milestones/Goals

Milestone		Due Date	Completion Date	Comments
PSU	Fabricate H ₂ -chemresistor test structures; vary alloy composition, incorporate membranes	10/01 3/02-1/03	9/01 11/02	completed
SNL	Construct laboratory testing facility	11/00 1/02	1/01 4/02	flow cell high-pressure cell
SNL	Develop surface chemistry models for predicting sensor performance	10/01	10/01	further modeling efforts abandoned
SNL	Characterize sensors, determine failure modes, evaluate design changes	1/03	12/02	completed
DCHT	Provide equipment for field tests	7/00 3/02	7/00 7/02	business failed
APCI	Upgrade and prepare field unit for pilot plant testing	2/02	9/02	completed
APCI	Pilot plant testing	12/00 7/02	12/00 4/03	completed

Hydrogen Cogeneration

Air Products & Chemicals

- HyCO plants CA and LA
- H₂ content of process streams
 - Refinery feed stock
 - Hydrocarbon reformer
 - Shift reactors (HTS,LTS)

Potential benefit to plant operations

- Redirect H₂-rich feed streams
- Optimize steam-to-carbon ratio
- Minimize gas venting
- Reduce power consumption

$$CH_4 + H_2O \leftrightarrow 3H_2 + CO$$

 $CO + H_2O \leftrightarrow H_2 + CO_2$

HTS/LTS Process Measurements

sensor

HTS/LTS Process Measurements

- Chemical resistor measurement in good agreement with:
 - GC difference measurement
 - Batch sample analysis
- Maintenance on O₂ feed lines showed 3% deviations in H₂ output
- Daily oscillations of H₂ observed for the first time

Market Potential

Major chemical and petroleum manufactures have shown interest

- Tennessee Eastman-Chemicals
 - batch hydrogenation
- Air Products & Chemicals
 - hydrogen and ammonia production
- Exxon-Mobil
- Dow
- Program did generate intellectual property
 - Service and licensing responsibilities may be assumed by APCI
- Commercialization partner DCH Technologies
 - Identified market opportunities however company failed in 2002

Market Potential

- Measuring H₂ content of process streams critical to S&A community (Industries of the Future)
 - Glass
 - surface defects in tin float baths
 - Chemicals
 - ammonia and polyolefin manufacture, batch hydrogenation
 - Petroleum
 - hydrogen recovery / cogeneration for oil refining
- Application outside Industries of the Future
 - Advancing the H₂ economy
 - generation, storage, utilization

Programmatic Merit for H₂ Production

Improving energy efficiency for hydrogen cogeneration

- Measure H₂ in refinery feed and process streams
 - Redirect H₂-rich feed gas
 - Optimize steam-to-carbon ratio

Redirecting H₂ rich refinery feed

- Estimated improvement in efficiency is 0.4% per plant
 - assume 6 units installed
- Save 1.24 BTU/SCF H_2 @ 0.5-1x10⁶ SCF H_2 /day/plant
- Save 2.2x10⁸ BTU/day in U.S. facilities
- Plant optimization would yield even greater energy savings

Programmatic Merit for Batch Hydrogenation

Batch hydrogenation

- Monitor H₂ as a function of time
 - 1% improvement in sustained catalytic efficiency
 - Extend life of catalytic bed by 0.5 years
- More than 400 hydrogenation facilities in U.S.
 - Save \$1.5-2.5x10⁸/year @ \$3.0-5.0x10⁵/year/plant
 - Extending intervals between catalyst replacement could save \$2.4x10⁷/year
- Mass spectrometer installed cost \$3.0x10⁵/unit
- H₂ Solid state sensor installed cost \$1.5x10⁴/unit
 - Chemical resistor chips are a small fraction of the installed cost!

Summary

- Recognized important relationships between processing and sensing environment to the application of H₂ chemical resistor technology
- Engineered solutions to barriers preventing industrial application
 - Optimize alloy metal, composition, film morphology
 - No limit to potential coating technologies
 - inorganic, organic, combinations (sol-gels), functionalized (hydrophobic)
- Established confidence within the industrial community by executing successful field trials